Study of the thermal and mechanical properties of silver tin alloy with addition of silver nanoparticles

L. Ortega Arroyo1, E. San Martín Mártinez 1, F. Barcelo Santana2, A. Cruz Orea3, M. Aguilar Mendez1 and J. Vargas Aparicio4

1Centro de Investigación en Ciencia Apliacada y Tecnología Avanzada del Instituto Politécnico Nacional, Mexico
2División de Estudios de Posgrado e Investigación, Facultad de Odontología, UNAM, Mexico
3Departamento de Fisica,Centro de Investigación y de Estudios Avanzados del IPN, Mexico
4Sección de Estudios de Posgrado e Investigación, ESIME- Zacatenco IPN, Mexico

Keywords: silver nanoparticles, photothermal techniques
property: thermal, mechanical
material: silver-tin alloy

It has been observed that adding refined material particle size of micron or nanometer level, in alloys improves the mechanical, electrical and thermal properties compared with metal alloys in bulk [1]. Dental implants metal silver-tin alloy is used only for education in dental laboratories and does not comply with the mechanical properties suitable for its use, being replaced by ceramic material and other more expensive alloys. In this research we evaluated the effect of adding silver nanoparticles (Ag NPs) in the silver-tin alloy to evaluate their structural, mechanical and thermal properties. To analyze the obtained data of the hardness (Vickers) and thermal analysis (by photothermal techniques) the response surface methodology (RSM) was used [2]. The microstructure was studied by using transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results indicate that the alloy without Ag NPs has a Vickers hardness of 96 HVN while this alloy with NPs was obtained a higher hardness of 130 HVN, considered as an alloy of Type III hardness. When is added Ag NPs to 0.05% w/w the thermal diffusivity of the silver tin alloy was 3 cm2/s, close to twice that reported value for the silver with a purity of 99.998% wt [3, 4]. The results of XRD indicate a change in the microstructure with an additional intense peak in the (002) plane, denoting the existence of another cubic phase.

  1. T. Venugopal, K. Prasad Rao, B.S. Murty Acta Materialia 55, 4439 (2007)

  2. Douglas C. Montgomery. Diseño y análisis de experimentos. 2nd edn.. (Limusa Wiley. México, 2004). pp..686.

  3. A. Calderon, R. A. Muñoz Hernandez, S. A. Tomas, A. Cruz-Orea and F. Sanchez Sinencio.J. APPL. PHYS 84, 11, 6327 (1998)

  4. M. V. Marquezin, N. Cella, A.M. Mansanares, H. Vargas and L.C.M .Miranda. Meas. Sci. Technol. 2, 396 (1991)

     Official Sponsors

uni Anter_logo Tziolas_logo_ linseis netzsch